helm/pkg/engine/engine.go

233 lines
7.7 KiB
Go
Raw Normal View History

2016-04-12 22:18:42 +00:00
package engine
import (
"bytes"
"fmt"
"log"
2016-04-12 22:18:42 +00:00
"text/template"
"github.com/Masterminds/sprig"
2016-04-28 03:50:15 +00:00
chartutil "github.com/kubernetes/helm/pkg/chart"
"github.com/kubernetes/helm/pkg/proto/hapi/chart"
2016-04-12 22:18:42 +00:00
)
// Engine is an implementation of 'cmd/tiller/environment'.Engine that uses Go templates.
2016-04-12 22:18:42 +00:00
type Engine struct {
// FuncMap contains the template functions that will be passed to each
// render call. This may only be modified before the first call to Render.
2016-04-12 22:18:42 +00:00
FuncMap template.FuncMap
}
// New creates a new Go template Engine instance.
//
// The FuncMap is initialized here. You may modify the FuncMap _prior to_ the
// first invocation of Render.
//
// The FuncMap sets all of the Sprig functions except for those that provide
// access to the underlying OS (env, expandenv).
func New() *Engine {
f := sprig.TxtFuncMap()
delete(f, "env")
delete(f, "expandenv")
return &Engine{
FuncMap: f,
}
}
// Render takes a chart, optional values, and attempts to render the Go templates.
//
// Render can be called repeatedly on the same engine.
//
// This will look in the chart's 'templates' data (e.g. the 'templates/' directory)
// and attempt to render the templates there using the values passed in.
//
// Values are scoped to their templates. A dependency template will not have
// access to the values set for its parent. If chart "foo" includes chart "bar",
// "bar" will not have access to the values for "foo".
//
// Values are passed through the templates according to scope. If the top layer
// chart includes the chart foo, which includes the chart bar, the values map
// will be examined for a table called "foo". If "foo" is found in vals,
// that section of the values will be passed into the "foo" chart. And if that
// section contains a value named "bar", that value will be passed on to the
// bar chart during render time.
//
// Values are coalesced together using the fillowing rules:
//
// - Values in a higher level chart always override values in a lower-level
// dependency chart
// - Scalar values and arrays are replaced, maps are merged
// - A chart has access to all of the variables for it, as well as all of
// the values destined for its dependencies.
func (e *Engine) Render(chrt *chart.Chart, vals *chart.Config, overrides map[string]interface{}) (map[string]string, error) {
var cvals chartutil.Values
// Parse values if not nil. We merge these at the top level because
// the passed-in values are in the same namespace as the parent chart.
if vals != nil {
evals, err := chartutil.ReadValues([]byte(vals.Raw))
if err != nil {
return map[string]string{}, err
}
// Override the top-level values. Overrides are NEVER merged deeply.
// The assumption is that an override is intended to set an explicit
// and exact value.
for k, v := range overrides {
evals[k] = v
}
cvals = coalesceValues(chrt, evals)
}
// Render the charts
tmap := allTemplates(chrt, cvals)
return e.render(tmap)
}
// renderable is an object that can be rendered.
type renderable struct {
// tpl is the current template.
tpl string
// vals are the values to be supplied to the template.
vals chartutil.Values
2016-04-12 22:18:42 +00:00
}
// render takes a map of templates/values and renders them.
func (e *Engine) render(tpls map[string]renderable) (map[string]string, error) {
2016-04-12 22:18:42 +00:00
// Basically, what we do here is start with an empty parent template and then
// build up a list of templates -- one for each file. Once all of the templates
// have been parsed, we loop through again and execute every template.
//
// The idea with this process is to make it possible for more complex templates
// to share common blocks, but to make the entire thing feel like a file-based
// template engine.
t := template.New("gotpl")
2016-04-12 22:18:42 +00:00
files := []string{}
for fname, r := range tpls {
2016-04-12 22:18:42 +00:00
t = t.New(fname).Funcs(e.FuncMap)
if _, err := t.Parse(r.tpl); err != nil {
2016-04-12 22:18:42 +00:00
return map[string]string{}, fmt.Errorf("parse error in %q: %s", fname, err)
}
files = append(files, fname)
}
rendered := make(map[string]string, len(files))
var buf bytes.Buffer
for _, file := range files {
// log.Printf("Exec %s with %v (%s)", file, tpls[file].vals, tpls[file].tpl)
if err := t.ExecuteTemplate(&buf, file, tpls[file].vals); err != nil {
2016-04-12 22:18:42 +00:00
return map[string]string{}, fmt.Errorf("render error in %q: %s", file, err)
}
rendered[file] = buf.String()
buf.Reset()
}
return rendered, nil
}
// allTemplates returns all templates for a chart and its dependencies.
//
// As it goes, it also prepares the values in a scope-sensitive manner.
func allTemplates(c *chart.Chart, vals chartutil.Values) map[string]renderable {
templates := map[string]renderable{}
recAllTpls(c, templates, vals, true)
return templates
}
// recAllTpls recurses through the templates in a chart.
//
// As it recurses, it also sets the values to be appropriate for the template
// scope.
func recAllTpls(c *chart.Chart, templates map[string]renderable, parentVals chartutil.Values, top bool) {
var pvals chartutil.Values
if top {
// If this is the top of the rendering tree, assume that parentVals
// is already resolved to the authoritative values.
pvals = parentVals
} else if c.Metadata != nil && c.Metadata.Name != "" {
// An error indicates that the table doesn't exist. So we leave it as
// an empty map.
tmp, err := parentVals.Table(c.Metadata.Name)
if err == nil {
pvals = tmp
}
}
cvals := coalesceValues(c, pvals)
//log.Printf("racAllTpls values: %v", cvals)
for _, child := range c.Dependencies {
recAllTpls(child, templates, cvals, false)
}
for _, t := range c.Templates {
templates[t.Name] = renderable{
tpl: string(t.Data),
vals: cvals,
}
}
}
// coalesceValues builds up a values map for a particular chart.
//
// Values in v will override the values in the chart.
func coalesceValues(c *chart.Chart, v chartutil.Values) chartutil.Values {
// If there are no values in the chart, we just return the given values
if c.Values == nil {
return v
}
nv, err := chartutil.ReadValues([]byte(c.Values.Raw))
if err != nil {
// On error, we return just the overridden values.
// FIXME: We should log this error. It indicates that the TOML data
// did not parse.
log.Printf("error reading default values: %s", err)
return v
}
for k, val := range v {
// NOTE: We could block coalesce on cases where nv does not explicitly
// declare a value. But that forces the chart author to explicitly
// set a default for every template param. We want to preserve the
// possibility of "hidden" parameters.
if istable(val) {
if inmap, ok := nv[k]; ok && istable(inmap) {
coalesceTables(inmap.(map[string]interface{}), val.(map[string]interface{}))
} else if ok {
log.Printf("Cannot copy table into non-table value for %s (%v)", k, inmap)
} else {
// The parent table does not have a key entry for this item,
// so we can safely set it. This is necessary for nested charts.
log.Printf("Copying %s into map %v", k, nv)
nv[k] = val
}
} else {
nv[k] = val
}
}
return nv
}
// coalesceTables merges a source map into a destination map.
func coalesceTables(dst, src map[string]interface{}) {
for key, val := range src {
if istable(val) {
if innerdst, ok := dst[key]; !ok {
dst[key] = val
} else if istable(innerdst) {
coalesceTables(innerdst.(map[string]interface{}), val.(map[string]interface{}))
} else {
log.Printf("Cannot overwrite table with non table for %s (%v)", key, val)
}
continue
} else if dv, ok := dst[key]; ok && istable(dv) {
log.Printf("Destination for %s is a table. Ignoring non-table value %v", key, val)
continue
}
dst[key] = val
}
}
// istable is a special-purpose function to see if the present thing matches the definition of a TOML table.
func istable(v interface{}) bool {
_, ok := v.(map[string]interface{})
return ok
}